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ABSTRACT

Agent-based models (ABMs) of urban systems have grown in popularity and complexity due to1

the widespread availability of high-performance computing resources and large data storage ca-2

pabilities. Credible synthetic populations are crucial for the application of ABMs to understand3

urban phenomena. Although several (agent) population synthesis methods have been suggested over4

the years, the spatial dimension of synthetic populations has not received as much attention. This5

study addresses this myopic treatment of synthetic populations by creating two distinct components6

- agents and the built environment - that are integrated to form a ‘full’ spatially-detailed synthetic7

population. To generate agents, we used multiple Bayesian Networks (BN) to probabilistically draw8

pools from the microsample, followed by a Generalized Raking (GR) adjustment to match marginal9

controls. Using various measures, we demonstrate that our BN + GR framework performs better10

than more commonly used synthesis methods in both capturing the heterogeneity in the microsample11

and matching marginal controls. We also highlight the importance of accounting for heterogeneity12

by using separate type-specific models based on an explicitly defined household typology. For13

built environment synthesis, we generated various spatial entities such as buildings, housing units,14

establishments, and jobs at distinct spatial locations by fusing data from various spatial datasets.15

Their spatial distributions are found to effectively approximate the ‘real’ built environment in our16

study area. Our proposed framework can be used to generate a ‘full’ synthetic population for use in17

ABMs with more spatio-demographic heterogeneity than can otherwise be estimated using traditional18

methods.19

Keywords Synthetic population · Built environment · Agent-based microsimulation · Bayesian Network · Land20

Use-Transport Interaction (LUTI) model21

Citation: Zhou, M., Li, J., Basu, R. and Ferreira, J. (2021). Creating spatially-detailed heterogeneous22

synthetic populations for agent-based microsimulation. Computers, Environment and Urban Systems. doi:23

10.1016/j.compenvurbsys.2021.10171724

1 Introduction25

With the availability of increased computing power, applications of agent-based microsimulations in the fields of26

transportation and urban studies have burgeoned in recent years (Fagnant and Kockelman, 2014; Waddell, 2002;27

Salvini and Miller, 2005). In particular, decision support systems such as land use-transport interaction (LUTI) models28

have increasingly delved deeper to portray the complex interrelationships between urban development and travel29

behavior with high spatio-temporal resolution through dynamic microsimulations (Acheampong and Silva, 2015; Basu30

and Ferreira, 2020a; Waddell, 2011). These microsimulation platforms, integrated with econometric models, depict31

zhoum89@mail.sysu.edu.cn
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behaviors of various agents (e.g., households or individuals) related to mobility patterns at various spatio-temporal32

scales in addition to the interactions between agent behaviors and urban systems.33

To that end, these agent-based models (ABMs) require disaggregate and comprehensive representation of systems34

they aim to simulate, a major component of which is the synthetic population. The purpose of a synthetic population35

in a microsimulation platform is to characterize the population, including households and individual members, with36

socio-demographic attributes in rich detail. The extent to which a synthetic population can replicate the ‘real’ (or actual)37

population has a significant impact on the credibility of the simulation that relies on it. Separate from the transportation38

domain, a related research stream has focused on constructing spatial microsimulations (Tanton et al., 2014; Ballas39

et al., 2005) that seek to create, analyze, and model individual-level data allocated to geographic zones (Lovelace40

et al., 2017). Although the two research communities use different terms, spatial microsimulations can be considered41

analogous to population synthesis as both aim to generate spatially-detailed microdata from samples.42

While nearly complete information of the real population is collected by national censuses, such data are largely43

inaccessible even for research purposes due to valid concerns over privacy and security. Instead, microsamples (often44

referred to as public use microdata samples or PUMS) collected from various types of surveys are often available along45

with marginal statistics of some key socio-demographic attributes. For example, in the U.S., the PUMS offer detailed46

data for every individual and household but the spatial resolution is purposely kept low (e.g., a large area with at least47

100,000 residents) to deter reverse-engineering efforts. Alternatively, marginal distributions of socio-demographic48

attributes (e.g., number of children in the household) are available at high spatial resolution (e.g., usually up to the block49

group level). The major challenge in creating a synthetic population for agent-based microsimulations lies in combining50

agent-based information at coarse spatial resolution with aggregate summary information at high spatial resolution.51

Despite the growing interest in population synthesis, the spatial dimension of synthetic populations has received limited52

attention. Most existing approaches assign aggregated zonal information to the synthetic agents and fail to go further53

in terms of spatial resolution. This may be because the use of ABMs in the LUTI realm has been largely dominated54

by transportation researchers, who are satisfied with the spatial resolution of aggregated zones (e.g., Traffic Analysis55

Zones or TAZs) that are adequate for their aim of simulating medium or short-term activity-travel patterns. However,56

aggregated zones are insufficient for the disaggregate modeling of long-term urban decisions, such as residential and57

workplace location choices (Zhu et al., 2018). For example, if we are to construct an ABM for exploring housing58

market dynamics, we would want households to bid on specific housing units in specific buildings at precise locations59

(not aggregated zones). Thus, we argue that the term ‘synthetic population’ has received myopic treatment in the60

literature and should be extended to include not just agents within the population but also detailed representation of the61

built environment (e.g., spatial entities such as housing units, buildings, schools, and establishments) that may enable62

spatially disaggregate allocation of the population. This is in keeping with the rising importance of ‘digital twins’ that63

seek to include increasingly large and accurate building information models.64

In this study, we apply state-of-the-art methods to generate a ‘full’ synthetic population accounting for the heterogeneity65

in household and individual characteristics as well as the marginal controls of key socio-demographics. Additionally, and66

more importantly, we augment the agent population synthesis by incorporating the construction of the city-wide building67

population and detailed inventories of housing units and establishments. The integration of these two components,68

agents (i.e., households and individuals) and the built environment, results in a spatially disaggregate ‘full’ synthetic69

population that replicates the urban system at a high spatial resolution. We demonstrate this framework through an70

application to the city-state of Singapore for the base year of 2016.71

The remainder of the paper is organized as follows. The next section reviews relevant literature and discusses key gaps72

and contributions. We briefly introduce the study area and data used for our Singapore application before presenting our73

framework for the ‘full’ synthetic population generation in Section 3. Section 4 presents the results of our population74

synthesis framework with comparisons to other popular methods. The paper concludes with discussions and remarks on75

research extensions in Section 5.76

2 Literature Review77

In this section, we first discuss existing population synthesis methods from the transportation literature. Then, we draw78

on the spatial microsimulation literature to summarize efforts in incorporating spatial detail into synthetic populations.79

Finally, we reflect on the research gaps within existing literature and propose a few contributions that this study hopes80

to make.81
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2.1 Population synthesis methods82

Perhaps the most popular method of population synthesis is the classical Iterative Proportional Fitting (IPF), which83

was originally introduced as a technique to adjust contingency tables (Deming and Stephan, 1940) and later widely84

applied in urban studies and transportation research for population synthesis (Arentze et al., 2007; Beckman et al., 1996;85

Guo and Bhat, 2007; Zhu and Ferreira Jr, 2014). The IPF method fits a multivariate contingency table initialized from86

microsample data to the target marginal control distributions in an iterative manner. Despite its conceptual simplicity87

and popularity, the IPF algorithm has some notable limitations. Its performance depends heavily on the quality of88

microsample data, which are often inadequate due to the recruitment of niche samples or inconsistencies in the sampling89

methodology. Additionally, the microsample is likely to reflect only a limited number of attribute combinations, which90

limits the heterogeneity of the constructed synthetic population (Sun and Erath, 2015). Trying to obtain unobserved (or91

limitedly observed) attribute combinations using IPF results in what is commonly referred to as the ‘zero-cell problem’92

(Farooq et al., 2013; Guo and Bhat, 2007). The IPF method also suffers from scalability issues whereby inclusion of a93

large number of attributes, especially those with multiple categories, can impose heavy computational burdens (Farooq94

et al., 2013; Sun and Erath, 2015). While the IPF usually matches distributions only at one demographic level (i.e.,95

either household or individual), a more recent variant known as the Iterative Proportional Updating (IPU) algorithm has96

been proposed to allow for matching both household-level and individual-level distributions (Ye et al., 2009). This97

algorithm has been implemented in PopGen, an open-source synthetic population generator (Konduri et al., 2016).98

Another often-used technique - combinatorial optimization (CO) - attempts to reach an optimized solution of population99

synthesis by randomly drawing from the microsample while minimizing differences in marginals with algorithms such100

as Simulated Annealing (Abraham et al., 2012; Voas and Williamson, 2000). CO-based approaches resemble IPF in101

that they also replicate existing agents from the microsample (Sun and Erath, 2015). There are other variants of IPF102

or CO such as fitness-based methods (Ma and Srinivasan, 2015) that follow the process of microsample replication.103

However, as mentioned earlier, over-dependence on microsample replication can result in several conceptual and104

empirical challenges.105

More recently, researchers have adopted a probabilistic paradigm instead of the deterministic approach of the conven-106

tional IPF-based methods (Farooq et al., 2013; Ilahi and Axhausen, 2019; Saadi et al., 2016; Sun and Erath, 2015; Zhang107

et al., 2019). These studies break down the synthesis process into two steps: (a) characterization of the joint distribution108

of agent attributes, and (b) sampling from the learned joint probability distribution. Thus, the synthesized agents109

generated through this approach are not replicas of the microsample, and consequently reflect a greater heterogeneity of110

agent attributes (Sun et al., 2018).111

While some studies opted to use Markov Chains for probabilistic population synthesis (Farooq et al., 2013; Saadi112

et al., 2016), others adopted data-driven inferential methods such as Bayesian Networks (Sun and Erath, 2015; Zhang113

et al., 2019). Markov Chains capture correlations among variables sequentially, which can be challenging to model114

when the sequence (or ordering) of variables is unknown and complex interdependencies exist among attributes. In115

the two studies using Markov Chains, we observed that the sequence of variables was exogenously pre-determined116

instead of being conceptually driven or learnt from the data. Bayesian Networks are comparatively better at inferring117

the multivariate probabilistic relationships among attributes, as the joint distributions are determined through graphical118

representation.119

A few studies have tried to adopt the best of both worlds by combining statistical learning techniques and fitting120

adjustments to generate synthetic populations that are representative of attribute interrelationships and consistent with121

marginal controls. Casati et al. (2015), for example, used MCMC and generalized raking (similar to an augmented IPF)122

to synthesize the population. Saadi et al. (2018) combined a Hidden Markov Model (HMM) with IPF and reported123

quasi-perfect marginal distributions and relatively accurate multivariate distributions. Ilahi and Axhausen (2019) applied124

generalized raking to adjust the BN-based synthesis and reported a good fit to the marginal controls.125

Over the last couple of years, the popularity of machine learning has motivated the use of deep learning methods126

in population synthesis. Methods such as Variational Auto-Encoder (VAE) and Wasserstein Generative Adversarial127

Network (WGAN) have been found to work well for high-dimensional cases (Borysov et al., 2019; Garrido et al., 2020).128

While deep learning methods provide promising approaches for population synthesis, long-standing issues of machine129

learning like the lack of interpretability (i.e., the black-box nature of machine learning models) and the tendency to130

overfit the training data remain viable concerns (Basu and Ferreira, 2020c).131

2.2 Spatial microsimulation methods132

A related and often overlapping stream of studies beyond the transportation domain is referred to as spatial microsimu-133

lation or, more broadly, small area estimation (Pfeffermann, 2002; Tanton and Edwards, 2012; Tanton et al., 2014).134

In essence, spatial microsimulation models seek to simulate the population at spatially disaggregated scales. Such135

3
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models have been developed for several decades and applied in various domains. Spatial microsimulation extends the136

traditional agent-based microsimulation methods to incorporate a spatial dimension (Farrell et al., 2012) and is often137

considered to be analogous to population synthesis, or a broader approach of which population synthesis is a crucial part138

(Lovelace et al., 2017). Similar to the previously discussed population synthesis approaches, spatial microsimulation139

models mainly leverage deterministic or probabilistic sample reweighting techniques - IPF and its variants (Edwards140

and Clarke, 2012; Panori et al., 2017), CO (Voas and Williamson, 2000; Farrell et al., 2012), and generalized regression141

(Ballas et al., 2007; Tanton et al., 2011; Vidyattama et al., 2013) - to generate synthetic population microdata and assign142

them to geographic zones (Lovelace et al., 2017). These models often go beyond the ‘mere’ synthesis of agents and143

derive estimates of certain key indicators like income and its inequalities (Vidyattama et al., 2013; Panori et al., 2017)144

and obesity (Edwards et al., 2011; Edwards and Clarke, 2012) or model population dynamics over time (Rephann and145

Holm, 2004; Kavroudakis et al., 2012; Birkin et al., 2017). Several spatial simulation models have been operationalized146

for policy analysis in various areas such as demography (Ballas et al., 2005; Birkin et al., 2017), healthcare (Edwards147

et al., 2011; Edwards and Clarke, 2012), and economics (Campbell and Ballas, 2013; Kavroudakis et al., 2012).148

2.3 Research contributions of this study149

Although the population synthesis literature has continued to evolve in methodological rigor, the methods largely fail150

to consider spatial information of the synthetic agents or adequately represent the built environment. Detailed spatial151

information is of great value to ABMs seeking to model spatially disaggregate agent behaviors, e.g., housing market152

dynamics, evacuation behaviors, pandemic spreads. On the other hand, spatial microsimulation models account for the153

spatial dimension but usually assign agents to aggregated geographic zones (Tanton et al., 2014; Lovelace et al., 2017).154

Peters et al. (2014) is an exception where housing units are considered but the study has limited explicit representation155

of spatial entities. Additionally, most methods utilize reweighting techniques (IPF, CO etc.) that replicate microsamples,156

which limits the heterogeneity of the synthetic microdata.157

The ‘digital twin’ approach that is recently gaining attention aims to provide a digital replication of living as well as158

non-living entities that can facilitate the means to monitor, understand, and optimize the functions of all physical entities159

and for humans to provide continuous feedback to improve quality of life and well-being (El Saddik, 2018). Translated160

to a more ABM-friendly language, this provides an impetus for greater attention to modeling the ‘non-living’ entities161

within urban systems (e.g., the built environment comprising housing units, buildings, jobs, schools, and establishments)162

by using ‘full’ synthetic populations.163

This study aims to contribute to the population synthesis and spatial microsimulation literatures on several counts. First,164

we propose a combined Bayesian Network and Generalized Raking framework for agent synthesis that can incorporate165

microdata heterogeneity and match marginal controls better than more traditional and popular methods such as IPF.166

Second, we construct the built environment at a more spatially detailed resolution than in previous studies (e.g., housing167

units, buildings, and establishments). Third, we assign synthetic agents to specific housing units and jobs, not just168

aggregated zones, that enable us to simulate detailed residential and job location dynamics (although we do not show169

these simulation results here). Fourth, by virtue of using a probabilistic sampling design, our agents are truly synthetic170

and cannot be traced back to the observations in the microdata, thereby lending an additional layer of privacy to the171

original data.172

3 Research Methods173

In this section, we first describe the study area of Singapore which we use as a case study to demonstrate the application174

of our framework. Second, we provide an overview of the various data sources that are used to construct the ‘full’175

synthetic population for Singapore, i.e., both agents and the built environment. Finally, we outline our proposed176

frameworks for agent synthesis and built environment synthesis.177

3.1 Study Area178

Singapore is a city-state that covers a total area of 719 square-kilometers. Located south of Peninsular Malaysia, it has179

a total population of around 5.61 million (as of 2016), among which 3.93 million are local residents (i.e., Citizens and180

Permanent Residents) belonging to 1.26 million resident households.1 The land area of Singapore is divided into six181

planning regions and subsequently 55 planning districts (or planning areas), as shown in Figure 1. As of 2016, there are182

1,422 TAZs and around 126,000 postcodes in use. Unlike the more conventional definition of postcodes (or ZIP codes)183

that most readers may be used to, postcodes in Singapore usually refer to a specific building in most areas (or a block in184

1These statistics are sourced from the Singapore Department of Statistics (commonly referred to as SingStat), available at
https://www.tablebuilder.singstat.gov.sg/publicfacing/mainMenu.action.
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less dense and undeveloped areas). Thus, Singaporean postcodes are point features, not polygon features, lending high185

spatial resolution to the representation of urban systems (which we will subsequently use for population synthesis).186

Figure 1: Geographical layout of Singapore 2

187

Unlike most of the U.S., land use and housing policies in Singapore prioritize public housing and mixed land use.188

Various ‘New Towns’ have been developed that are designed to be self-sufficient in terms of providing everyday189

facilities within close proximity. The Housing Development Board (HDB) of Singapore is responsible for public190

housing policies and has overseen the implementation of various housing schemes that provide public housing to over191

80% of Singaporean households (Singapore Housing & Development Board, 2019). Public housing flats (or HDB flats,192

as they are more commonly referred to) can be sold by current owners under certain conditions on the occupancy period.193

In addition, there are several types of private housing in Singapore including condominiums, apartments, and landed194

properties (i.e., where the property deed includes the land as well as the built structure).195

Our proposed framework for population synthesis can be generalized to any other metropolitan region with similar data196

sources (which we intend to demonstrate through future research). We chose Singapore as the study area in this paper197

because of the availability of a rich variety of data sources (some of which are proprietary), and our need for a synthetic198

Singapore population to initialize the ABM we have developed for a project to simulate urban futures.199

3.2 Data200

In this study, we use the 2016 Household Interview Travel Survey (HITS) as the detailed microsample. The HITS is201

a 10% representative sample of Singaporean households that contain at least one resident (i.e., Citizen or Permanent202

Resident). This dataset is proprietary and was provided by the Land Transport Authority (LTA) of Singapore that203

conducts these travel surveys periodically every four years. That being said, any other representative microsample, such204

as a Public Use Microdata Sample (PUMS), a housing survey, or a consumer expenditure survey, would be just as205

2The Central Water Catchment is part of the Central Region and the West Water Catchment is part of the West Region. Both are
designated as natural reserves that have restrictions on residential, commercial, and industrial uses.
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viable as long as it contains detailed information on a rich set of variables that are of significance and interest to the206

phenomena modelers seek to explore through ABMs.207

IPF-like algorithms also use a set of marginal controls that specify the total number (or proportion) of households or208

individuals that belong to certain categories across one or more variables. Although most studies in the literature used209

only socio-demographic marginals, we used marginals that controlled for both socio-demographic and spatial variations.210

These datasets were obtained from the 2015 General Household Survey (GHS), which is available on the open data211

portal provided by the Singapore government.3 The mid-decade GHS provides comprehensive data on Singapore’s212

population and households in between the Population Censuses (which are conducted every ten years at the turn of the213

decade).214

We used a variety of datasets in this study for built environment synthesis. These data were obtained through215

collaborative projects from local agency partners or sourced from open sources and include a wide range of information216

regarding the urban space. Proprietary data such as building addresses (postcodes) and building footprints were provided217

by the Singapore Land Authority (SLA) for 2016. We also used the open-source land use layer from the 2014 Master218

Plan created by the Urban Redevelopment Authority (URA). Likewise, public housing building information is openly219

available on the HDB website. Other open-source third-party data4 that provide information on building types, building220

heights (number of stories), and construction times were also utilized. Additionally, data on zone-to-zone travel times at221

the TAZ level (i.e., travel skim matrices) were provided by LTA and used for the assignment of jobs to synthetic worker222

agents.223

3.3 Full population synthesis224

Although we present our proposed framework for synthesis of both agents and the built environment in Figure 2, the225

two components of the framework along with their integration are discussed separately.226

3.3.1 Agent synthesis227

In this subsection, we will focus only on the framework for agent synthesis (i.e., the left component of Figure 2).228

Our synthesis approach for agents, i.e., households and individuals, emulates the two-step process discussed earlier,229

consisting of sampling from a probabilistic model followed by adjustment to marginal controls using IPF or a similar230

technique. We chose the Bayesian Network (BN) as our probabilistic model because it has the necessary flexibility to231

capture heterogeneous multivariate joint distributions, and Generalized Raking (GR) for matching multivariate marginal232

controls at both the household and individual levels because of its higher efficiency compared to the traditional IPF233

algorithm.234

The BN is a graphical model that can learn and represent complex relationships between a large set of variables. It is235

commonly depicted as a directed acyclic graph5 where nodes correspond to variables and edges indicate correlation236

between variables - this is known as the “structure” of the BN. Each node also possesses a conditional probability237

distribution that defines the probability of observing certain values, given the values of its parent node(s) - these form238

the “parameters” of the BN. Using its structure and parameters, a BN can model a complex joint distribution that239

contains a wide range of variable correlations.240

Departing from previous literature, we train different BNs based on explicitly defined household types. As households241

comprise a diverse set of family structures and living arrangements, we expect different household types (or structures)242

to exhibit different joint distributions representing unique relationships between variables. To this end, the microsample243

data are partitioned into six sub-samples (Table 1), each corresponding to a household type: single-member households244

(SM), multi-generational households (MG), married couples without co-residing children (MC), single parents with245

children (SP), nuclear households (NH), and others (OT). These types mirror the household structures defined by the246

Ministry of Social and Family Development of Singapore (Singapore Ministry of Social and Family Development,247

2017). The first 5 types (excluding ‘others’) encompass over 90% of Singaporean households, which makes us248

reasonably confident that this typology should be able to satisfactorily represent a large amount of the variation within249

3https://data.gov.sg/
4For example, Streetdirectory (https://www.streetdirectory.com/) and EMPORIS (https://www.emporis.com/)
5A directed acyclic graph (DAG) consists of vertices and edges (or arcs), with each edge directed from one vertex to another,

such that following those directions will never form a closed loop.
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Figure 2: Integrated framework for agent and built environment population synthesis

Table 1: Household typology for agent synthesis

Type Definition Count Share (%)

SM
Single-member
(contains exactly 1 individual)

156,950 12.5%

MG
Multi-generational
(contains individuals of at least 3 age ranges, each separated by at least 15 years)

118,850 9.5%

MC
Married couple without co-residing children
(contains 2 individuals whose age groups are not more than 15 years apart)

186,800 14.8%

SP
Single parent with children
(contains 2 or more individuals, exactly 1 of which is at least 15 years older than the others)

87,500 7.0%

NH
Nuclear household
(contains 3 or more individuals, exactly 2 of which are at least 15 years older than the others)

598,950 47.7%

OT
Other households
(any household that does not fulfill the above criteria, e.g., multiple siblings living together)

108,550 8.6%

Singaporean households. We note here that any other classification scheme that is a reasonable representation of the250

socio-cultural context of a particular study area will likely be just as appropriate. In addition to modeling heterogeneous251

interrelationships, explicitly separating household types also facilitates expert-guided verification and, if necessary,252

modification of the BN structure and parameters discovered by the algorithm.253

BNs can be specified directly based on expert knowledge. In addition, there exist a wide variety of data-driven algorithms254

for learning both the structure and parameters of BNs. A popular subset of these are “score-based” algorithms, which255

search for a network structure that results in an optimal score measure, such as the Bayesian Information Criterion256

(BIC) or Akaike Information Criterion (AIC). In keeping with previous BN-based population synthesis methods, we257

chose an algorithm that selects a parsimonious model with good fit based on the AIC measure. A household-level BN258

was constructed for each of the six microsample data sub-samples corresponding to a household type. We used the259

greedy hill-climbing algorithm provided by the R package bnlearn for learning the structure of the BN, followed by260
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maximum likelihood estimation for learning the parameters of the BN (Scutari, 2010). This method is also robust to261

missing data, as we can use multiple imputation to obtain several BNs and average them into a single model (not unlike262

ensemble-based models in machine learning such as random forests).263

To create a pool of synthetic households for Singapore, the appropriate number of households of each type (Table264

1) were drawn from the corresponding BN using forward sampling, producing a total of 1.26 million households. A265

similar, but slightly modified, process was used to create a pool of synthetic individuals. First, the separate household-266

and individual-level microsample tables were joined together to create a combined dataset containing all variables267

of interest. Modelers may choose to ignore this step for applications where a combined dataset for households and268

individuals is directly available. Second, this dataset was also partitioned into the six aforementioned household types,269

since differences in variable relationships and distributions at the household level are expected to percolate down270

to the individuals within the households as well. Third, individual-level BNs (which contain both household- and271

individual-level variables) were learned from the sub-samples. In training the individual-level BNs, we initially used272

the entire set of household-level variables used for the household-level BNs and consequently trimmed edges that273

were found to be inconsequential or have very weak strength. The resultant individual-level BNs are parsimonious274

representations which prohibit edges to household-level variables that do not play a part in the following individual275

sampling step.276

Building on the previous step of sampling households, we drew as many individuals as determined by the sampled277

household size variable from the corresponding individual-level BN (that is specific to the household type), by forward278

sampling conditional on the sampled household variables. This ensures that the characteristics of household members279

correspond to the characteristics of the household they belong to. A pool of roughly 4 million synthetic individuals was280

constructed from this individual sampling process.281

Although the pools of synthetic households and individuals sampled from the BNs can reproduce the microsample’s joint282

distributions fairly well, they do not match reported aggregate marginal distributions of certain control variables. This is283

because the BNs approximate the joint distributions observed in the microsample, which is an imperfect representation284

of the overall population (usually represented through the Census) despite best efforts to obtain representativeness.285

Several issues could occur that distort the representativeness of the microsample (e.g., sampling bias, attrition, non-286

response), but those are usually beyond the purview of the modeler seeking to construct synthetic populations from a287

given microsample and are outside the scope of this paper.288

For ABMs with a spatial dimension (e.g., location choice simulations), it is imperative to ensure that spatial distributions289

of people, housing, and jobs are appropriately represented. Failure to consider the spatial dimension in the population290

synthesis approach can affect the veracity of the ABM and may reduce the effectiveness of scenario explorations. In291

order to adjust the BN-generated samples spatially, we used the Generalized Raking (GR) procedure from the R package292

MultiLevelIPF for the household and individual pools to simultaneously fit them to a set of selected multivariate293

marginal controls (Mueller, 2018). We chose the planning area as our spatial unit of analysis (recall from Figure 1 that a294

planning area in Singapore is equivalent to a neighborhood), as our ABM focuses on location choices that are pertinent295

to this level of detail. Thus, the marginal controls we chose to match our synthetic population with are: (a) Planning296

Area × Dwelling Type, Planning Area × Household Income, and Dwelling Type × Number of Workers at the household297

level, and (b) Planning Area × Age and Planning Area × Employment Status at the individual level. Choosing any other298

spatial unit (e.g., the commonly used TAZ for traffic simulations) is just as acceptable; we suggest that the modeler299

choose the scale of spatial detail for marginals based on the granularity with which they wish to model spatial processes.300

After convergence, GR produces fractional weights, separately for each household and for each individual. However,301

in order to avoid disarranging the grouping of individuals in households, using only the household weights should be302

sufficient. To create a synthetic population, an integerization procedure must be performed on the fractional household303

weights to convert them to integers. The truncate, replicate, sample (TRS) method is chosen for this purpose (Lovelace304

and Ballas, 2013). TRS first truncates weights to their integer part, then randomly samples weights to increment by one,305

weighted by the fractional part, until the original total weight is restored. We then replicated each household according306

to its computed integer weight, replicating the constituent individuals along with it. Since GR and TRS preserve the307

total size of the population, we finish the resident synthetic population generation with 1.26 million households and308

3.96 million individuals.309

Finally, since Singapore has a large non-resident population (consisting of 1.67 million individuals in 2016) that factors310

significantly into ABMs of mobility choices, we add these households and individuals as a post-processing step. Most311

non-residents have residential and job locations that are largely dictated by government and employer policies. For312

example, construction workers and single-individual household work permit holders live in assigned dormitories and313

work at assigned locations. Therefore, a certain number of individuals holding each work visa type (e.g., Employment314

Pass, Student Pass, Construction Work Permit) as determined by statistics from the Ministry of Manpower are inserted315

into the synthetic population (Singapore Ministry of Manpower, 2020). Their characteristics are determined by a316

8



CREATING FULL SYNTHETIC POPULATIONS FOR AGENT-BASED SIMULATIONS - A PREPRINT

combination of expert knowledge about the different foreigner demographics and observed variable distributions in the317

HITS microsample. Adding non-residents to the synthetic population allows the transportation modeling component of318

ABMs to model the full set of daily trips. However, these non-resident households and individuals are not included in319

the results and discussion that follow in this paper, since the reference data (i.e., HITS microsample and GHS marginal320

controls) that we use for comparison do not include non-residents.321

3.3.2 Built environment synthesis322

We represent the urban built environment through a series of spatial entities in a hierarchical structure at different323

spatial scales (see the right side of Figure 2). These levels of spatial aggregation (e.g., planning regions, planning324

areas, etc.) may vary by the study area but the general strategy of adopting a hierarchical structure of spatial entities325

is expected to serve the modeler well for all cases. The shaded boxes in the sub-figure are spatial entities that we326

specifically constructed to record the residences and workplaces for households and workers. Their size and location327

are estimated using sources independent from the socio-demographic data (on the left side of Figure 2). They are linked328

to the demographic data through elements in the spatial hierarchy, usually the postcode.329

The ontology-based approach is well-suited for the synthesis of the built environment in this study given the variety330

of data utilized. Datasets from various sources containing different aspects of the built environment are integrated331

based on the ontology that links semantic features that characterize the entities in the built environment. Based on the332

created ontology, the integration process then constructs the full list of entities, retrieves attribute values based on the333

relationships in the ontology, and imputes missing values with similar entities. Spatial entities are created either in334

sequence (in the cases of buildings, housing units, and establishments) or in parallel (in the case of land parcels). We335

refer readers to Zhu and Ferreira (2015) for further details of this ontology-based approach.336

The primary element of built environment synthesis is the creation of buildings, as they form the basis for synthesizing337

housing units and establishments. This process includes cleaning building geometry data and inferring various building338

attributes. We obtained spatial locations and building geometries directly from building footprint data with relatively339

minimal processing (such as merging multiple postcodes that point to the same building). Next, we inferred building340

attributes such as building type, height, and space. Building types (e.g., residential, commercial, industrial, etc.) were341

inferred first based on the footprint data and third-party datasets matched through postcodes. For residential buildings,342

specific types (e.g., public, private, and landed) and subtypes (e.g., condos, apartments, terrace houses, etc.) were also343

identified. For most cases, we were able to retrieve the number of stories within each building directly from available344

data. For cases with missing data, we used the building heights to estimate the number of stories. The building space345

for different types was estimated using the number of stories and the area directly retrieved from the building footprints.346

We also estimated the age of the buildings using data on construction and commencement dates, when available.347

Based on the synthetic buildings and their use types (e.g., residential, commercial, industrial), we then created housing348

units of different types and establishments and firms in various industry sectors. Counts of these entities were retrieved349

directly from available data or estimated based on building space for the specific use type. We estimated other entity350

attributes (e.g., sizes, ages, etc.) based on the relevant characteristics of the buildings. Additionally, we synthesized land351

parcels using open-source land use data from URA. We also used spatial data on different amenities (such as public352

transit facilities, top schools, shopping malls, and expressway access points) to compute ‘local’ accessibility measures353

for each building (and postcode) along the road network.354

3.3.3 Assigning agents to the built environment355

Synthetic household agents need to be assigned to housing units, and worker agents (individuals) need to be assigned to356

jobs to produce a spatially detailed synthetic population. In this study, we matched housing units to synthetic households357

based on their planning areas (neighborhoods) and dwelling types, which are known from the HITS microsample358

data. A rule-based matching heuristic was implemented for this assignment. First, a predefined percentage of units359

was reserved in each zone-dwelling type bin based on expert knowledge and historical trends, reflecting the vacancy360

rate. Then, within each bin, housing units were randomly assigned to households, with larger units more likely to be361

assigned to larger and wealthier households. If we ran out of units before all households in that bin were matched, such362

households were matched to either a unit of similar dwelling type in the same neighborhood, or, if still unavailable, to a363

unit of same dwelling type in a nearby neighborhood.364

We assigned jobs to worker agents using a destination choice model estimated using the HITS microsample. The365

destination choice set of each worker comprises a set of 30 TAZs that contain at least one job pertaining to their366

industry sector. The explanatory variables include the number of jobs in that sector, the log-transformed commuting367

cost (travel time) between the worker’s home and destination (workplace), and interactions between commuting cost368

and individual-level attributes of the worker (e.g., age, gender, income, etc.). The estimated model was used to predict369
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the probabilities of choosing the 30 TAZs for each worker, following which we used a probability-weighted random370

assignment to match a worker with a job within the chosen TAZ.371

4 Results and Discussion372

We first evaluate the performance of our framework against more commonly used population synthesis methods using a373

variety of metrics. Then, we describe the synthetic agents we generated by focusing on the different BNs we learned at374

both the household- and individual-levels. Finally, we conclude this section with a discussion of the spatial entities that375

are derived from the built environment synthesis.376

4.1 Model performance377

Since the built environment synthesis is largely a data integration and fusion process sans the use of any statistical378

modeling approaches, we will focus exclusively on the agent synthesis component of our synthetic population generation379

framework to evaluate model performance. As a reminder, our synthetic agent population consists of 1.26 million380

households and 3.96 million individuals, accurately reflecting the resident population of Singapore in 2016. The381

agent population synthesis process, including data imputation and processing, BN learning and sampling, GR, and382

integerization, takes about 35 minutes on a x64 laptop PC with 16 GB of RAM and a 1.90GHz Intel Core i7-8650U383

CPU.384

The population synthesis framework used in this study is a combination of Bayesian Networks (BN) and Generalized385

Raking (GR), which we call the ‘BN + GR’ method for simplicity. We compared this framework with the BN-sampled386

pools generated before the application of GR (i.e., BN only), as well as iterative proportional updating (IPU), a multilevel387

IPF algorithm that is used as part of the popular open-source software PopGen. We used the IPU implementation from388

the R package ipfr, with the same marginal controls listed previously to ensure a fair comparison (Ward, 2020). The389

synthetic populations generated by these three methods (i.e., BN + GR, BN only, and IPU) are evaluated using two390

criteria: (a) similarity to the joint distribution of the weighted microsample, and (b) similarity to the marginal control391

distributions.392

4.1.1 Similarity to the joint distribution of the weighted microsample393

We evaluate the similarity of the generated synthetic populations to the joint distribution of the weighted microsample394

using two methods. First, we use an objective error measure to quantify the extent of the similarity, whereby a lower395

error value indicates a greater similarity. Second, we use a graphical method to understand the performance of each396

method in greater detail. It is worth noting here that we used the unweighted microsample to generate our synthetic397

populations. Sampling weights are usually calculated and provided by the agency conducting the survey in order to398

account for stratified sampling or other known deviations from a purely random sample. In our case, there is no need399

for sampling weights since the BN sampling process generates a full synthetic population based on the multivariate400

correlations observed in the travel survey.401

As an objective measure of differences between each of our three generated synthetic populations and the one generated402

using the HITS microsample with sampling weights, we use the standard root mean square error (SRMSE) as defined403

by Sun and Erath (2015):404

SMRSE =

√√√√ M1∑
m1=1

...

Mn∑
mn=1

(fm1,...,mn
− f̂m1,...,mn

)2 ×
n∏

i=1

Mi (1)

where n is the total number of variables upon which the joint distribution is defined; fm1,...,mn and f̂m1,...,mn are405

the relative frequencies of a particular variable combination in the weighted microsample and synthetic population,406

respectively; and Mi is the total number of categories of the ith variable. AA SRMSE value of zero represents a perfect407

match between the two joint distributions under comparison, while higher values represent greater mismatch. However,408

we neither expect nor desire a zero SRMSE, since the HITS, even with sampling weights, is an imperfect representation409

of the population (as evidenced by HITS’ discrepancies with the marginal controls). SMRSE values for the three410

different methods at both the household- and individual-levels are reported in Table 2.411

We expect the BN-only method to have the lowest SRMSEs, because the BNs directly attempt to model the joint412

distribution of the microsample. When GR is applied to match marginal controls, the joint distribution is altered slightly,413

which leads to a small increase in SRMSE observed for the BN + GR method. IPU yields the greatest error of all;414
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Table 2: SRMSE values for different agent population synthesis methods

SynPop method
SRMSE

(household-level)
SRMSE

(individual-level)

BN + GR (this study) 23.66 7.90
BN only 22.34 6.58
IPU 102.86 9.67

this is also unsurprising since it tries to replicate the microsample, which constitutes a significantly smaller sample415

size than the BN-sampled pools. IPF-like methods tend to achieve greater accuracy with larger sample sizes that can416

capture greater heterogeneity (Wong, 1992), but microsamples are expensive to collect and ‘real-world’ surveys rarely417

go beyond a 10% sampling rate (as is the case with HITS in Singapore). Finally, we note that the larger magnitudes of418

the household-level SRMSEs are not due to any particular biases of the methods in balancing household-level versus419

individual-level fits, but are simply because we define nine variables of interest at the household-level but only six at the420

individual-level.421

The second comparative approach visualizes the fit of the synthetic population to the weighted microsample through a422

frequency plot, where the frequencies of every unique variable combination in the two datasets are plotted against each423

other. Each point in the frequency plot represents a unique variable combination. A perfect match is represented by a424

line of best fit with zero intercept, unit slope, and an R2 value of one. Additionally, for each plot, we report the Standard425

Error around Identity (SEI), which resembles R2 in that higher values are better but instead measures the extent of426

dispersion from the perfect line of best fit (Tanton et al., 2011). Thus, unlike R2, the SEI measure can account for427

systematic biases in the synthetic population. We present frequency plots at both the household- and individual-levels428

in Figure 3.429

(a) Household-level comparison (b) Individual-level comparison

Figure 3: Frequency plots to assess joint distribution match between synthetic populations and weighted microsample

Three important observations emerge from this visual analysis. First, the synthetic population generated by the BN-only430

method achieves the best fit to the joint distribution, as evidenced by the slope and adjusted R2 values being closer431

to one and the SEI being higher than the rest. Second, the IPU method performs the worst among the three, possibly432

because it cannot generate as many variable combinations (there are only 22,494 degrees of freedom for IPU at the433

household-level as compared to over 190,000 d.o.f. for BN-based methods). Third, the individual-level distribution434

is much easier to fit to than the household-level distribution, as the latter contains more variables (each with more435

categories) that leads to increased complexity. In summary, this visual analysis reinforces our observations from the436

SMRSE comparisons and shows that BN + GR performs reasonably well at approximating the joint distribution, but not437

as well as BN-only. We will explain in the following subsection why BN + GR is a better choice, although it may seem438

counterintuitive at this point.439

4.1.2 Similarity to the marginal control distributions440

We also evaluated the similarity of the synthetic populations generated by the three methods (i.e., BN + GR, BN-only,441

and IPU) to the reported marginal control distributions. As a reminder, the marginal controls we chose to match to our442
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synthetic agent populations are: (a) Planning Area × Dwelling Type, Planning Area × Household Income, and Dwelling443

Type × Number of Workers at the household level, and (b) Planning Area × Age and Planning Area × Employment444

Status at the individual level. We explore the similarities to the marginal controls through two methods. First, we look445

at bar plots that highlight how the distributions match up for the socio-demographic variables in the aforementioned set446

of marginal controls. Second, we look at maps that highlight the spatial variation in the differences (or errors) between447

the distributions of marginal controls. To maintain a parsimonious representation of the large set of comparisons that448

can be generated (given the number of marginal controls we use), we show bar plots for household income and number449

of workers (at the household-level) and age (at the individual-level), and maps for selected dwelling types (at the450

household-level) and employment status (at the individual-level).451

The three bar plots for household income, number of workers, and individual age are shown in Figure 4. In general,452

we find that the synthetic populations generated by the BN + GR and IPU methods are able to match the marginal453

control distributions almost perfectly. This is unsurprising as these methods include an explicit IPF-like process454

that aims to match the reported marginals. On the other hand, the microsample with sampling weights (or weighted455

HITS) and the synthetic population generated by the BN-only method have skewed distributions that are often very456

different from the marginal controls (see, for example, the case of household income where higher-income households457

are under-represented in the microsample). Using sampling weights or only the BN creates an overreliance on the458

microsample, which usually falls short of being representative of the population despite best design efforts, and does459

not align the microsample with the reported marginal distributions. Thus, it seems clear that both BN + GR and IPU are460

equally adept at matching marginal controls and perform much better at this objective than the BN-only method. This,461

in combination with our findings regarding the similarity to the joint distribution of the weighted microsample, leads us462

to conclude that the BN + GR method (‘our’ method) achieves a fine balance between the two objectives, which the463

other two methods cannot since they perform well on only one of the two objectives.464

Figure 4: Bar plots to assess distribution match between synthetic populations and socio-demographic marginal controls

In addition to exploring the match with socio-demographic marginal controls, we also explored the match with spatial465

marginal controls. We present the differences (or errors) between the spatial distributions of the synthetic population466

and the marginal controls for selected dwelling types and employment statuses (for brevity) in Figure 5. Instead of467

a comparative analysis as earlier, we only show error maps for the synthetic population generated by the BN + GR468

method to understand the extent to which systematic spatial biases might be generated by our method, if any. Looking469

at the most popular dwelling types for public and private housing (i.e., HDB flats with 3 rooms, and condominiums and470

apartments respectively), we do not find any observable non-random patterns of spatial errors. In particular, we find that471

almost all planning areas have dwelling type distribution errors between -2.5% to 2.5%, which are quite reasonable.472

Errors greater than 5% are infrequent and occur in different planning areas across the maps.473

We obtain similar observations from the spatial error distribution of the employment status of individuals. In particular,474

we find that we are able to predict inactive individual counts (i.e., individuals who are not in the labor force) within475

a 2.5% error margin. Our predictions for employed individuals are within the 2.5% error margin for the majority of476
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(a) Households living in HDB 3-room flats (b) Households living in condos and apartments

(c) Employed individuals (d) Individuals not in labor force

Figure 5: Maps to assess spatial distribution match between BN + GR synthetic population and selected socio-
demographic marginal controls

planning areas, with the exception of a few cases in the Central Region where the error margin is slightly higher but still477

less than 5%. In general, we do not find any reason to suspect that our method may have introduced systematic spatial478

biases within the synthetic agent population. Additionally, upon detailed examination of our results, we found that our479

predictions after the GR step are quite accurate with less than 1% difference. The errors increase (but not by much, as480

demonstrated through the maps) due to the integerization process. An improved integer programming algorithm might481

find a better solution, but finding one with adequate performance on our scale of problem is beyond the scope of this482

paper.483

4.2 Synthetic agents: Households and individuals484

In this subsection, we briefly discuss the Bayesian Networks we obtained for households and individuals at the end of485

the BN training step in our BN + GR framework. Recall that we had defined a typology of six household categories486

based on which we trained six BNs for households and an additional six BNs for individuals. We represent these BNs487

in Figure 6, where the nodes are variables and the edges have varying thickness that are directly related to the strength488

of the relationship between the nodes they connect. The shaded nodes in the figure are household-level variables, while489

the unshaded nodes are individual-level variables. Each variable is treated as a categorical (i.e., ordinal or nominal)490

variable with multiple levels (or categories), which are listed in detail in the appendix.491
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(a) Household-level Bayesian Networks
(Variable dictionary - pln_area: Planning Area, mrt_dist: Distance to nearest MRT station, unit_type: Dwelling
type, hh_size: Household size, hh_income: Household income, hh_eth: Ethnicity of head of household, hh_age:
Age of head of household, workers: Number of workers, cars: Number of cars)

(b) Individual-level Bayesian Networks
(Variable dictionary - age: Age, sex: Gender, income: Income of individual, industry: Industry sector of job, edu:
Highest educational qualification, employ: Employment status)

Figure 6: Trained Bayesian Networks for the six household categories at both household and individual levels

The household-level BNs shown in Figure 6a share the same ‘root’ relationships, whereby the dwelling type and distance492

to the nearest MRT station are both conditional on the planning area where the household resides. The importance493

of considering the spatial dimension in population synthesis is underscored by the fact that the planning area is the494

root node for all six BNs, implying that socio-demographic correlations are largely dependent on (and vary by) spatial495

locations. We observe further commonalities as we proceed ‘deeper’ down the BNs, e.g., the number of workers and496

the number of cars owned by the household are conditional on the household income, which in turn is conditional on497

the dwelling type. However, the nature of these relationships vary by household type. In single-member households,498

single-parent households with children, and married households without co-residing children, the strongest link is499
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unsurprisingly between the number of workers and household income as these households are less likely to earn income500

through non-work means (e.g., pension or government benefits). The strongest relationship for multigenerational501

households and nuclear households is between dwelling type and planning area, as these choices are likely to be driven502

by similar preferences (e.g., proximity to primary schools, community centers, or parks). For nuclear households (who503

comprise almost 50% of the Singaporean population), we also notice a strong relationship between the number of504

workers and the age of the household head. This is because nuclear households with a younger household head are505

likely to have more workers (and vice versa).506

Individual-level BNs comprise both individual-level variables (unshaded nodes) and household-level variables (shaded507

nodes), as shown in Figure 6b. Among all household types, we find common relationships between age and employment508

status, employment status and income, and gender and industry sector of job. However, these relationships vary by509

strength across the household types. For example, for individuals in nuclear households (forming almost 50% of the510

population), there are very strong relationships between the job industry sector and the individual’s gender and income.511

Additionally, the ethnicity of the household head can influence the highest educational qualification of individuals within512

the household (which may reflect ethnic disparities in access to education resources and/or opportunities). For married513

households without co-residing children, the age of the individual has a strong impact on their employment status.514

For single parents without children, their employment status strongly influences their income. Among single-member515

households, the age of the household head (who is also the only individual in the household) relates strongly with516

employment status. This perhaps reflects how younger individuals (likely students) are less likely to be employed.517

Despite all BNs exhibiting a common and ‘expected’ set of relationships in general, there are important differences518

between the BNs for the different types of households. For instance, the household-level BN for nuclear households519

is unique in that the number of cars owned is related to household size, which likely reflects the likelihood of car520

ownership (and consequently the number of cars owned) being directly proportional to the number of children in521

nuclear households. Another example is the individual-level BN for single parents with children, which is unique in that522

household size determines individual age. This lines up with our intuition because the age distribution in a single-parent523

household depends strongly on the number of children, which is simply one less than household size. Finally, but524

importantly, we note that many significant differences between the BNs for different household types are hidden in the525

parameters (i.e., node probability distributions) in addition to those observed from the graph structures. For example,526

although number of cars owned is determined by household income in both single-member and nuclear households,527

single-member households rarely, if ever, own multiple cars, whereas this is not unexpected for nuclear households.528

These numerous differences in both structures and parameters between the BNs justify our choice of using a household529

typology to learn type-specific BN models.530

4.3 Synthetic built environment: Spatial entities and zones531

We generated the synthetic built environment comprising various spatial entities in Singapore for the year 2016. First,532

our building synthesis process resulted in the creation of 116,415 buildings. We present the spatial distribution of533

buildings in Singapore by use type in Figure 7, where we find residential buildings distributed across the island,534

commercial buildings mostly located within the central area, and industrial buildings situated mainly in the suburban535

areas (particularly along the south-west shore of the island). This spatial distribution lines up with our first-hand536

knowledge of Singapore and external data sources (e.g., official land use maps and geospatial services). These buildings537

are home to the housing units and establishments of different industries that provide housing and jobs to the household538

and individual agents respectively.539

Using the residential buildings generated through the building synthesis process, we created around 1.66 million540

housing units. We purposely create more units than households to allow for a reasonable vacancy rate that can mimic541

the ‘real’ housing market. We also included dormitories reserved for foreign migrant workers and units occupied by542

foreigner-headed households (whom we had to explicitly include in our agent population as a post-processing step due543

to data unavailability in the microsample). The spatial distributions of different types of housing units are shown in544

Figure 8. Public HDB housing units are located within HDB buildings that are located across the island in HDB estates545

and New Towns. Private units (i.e., condominiums and apartments), on the other hand, are more clustered within the546

Central Region. Landed properties are scattered around the island and other types of units, such as dormitories and547

shophouses (i.e., mixed-use landed houses with the ground floor being commercially used while upper levels are used548

for residential purposes), are located more in the suburban areas.549

Similar to the generation of housing units, we generated synthetic establishments using the generated commercial and550

industrial buildings to accommodate the employment opportunities for synthetic individuals. 194,044 establishments551

are created with around 3.42 million jobs, which is slightly higher than the 3.12 million employed individuals obtained552

from the synthetic agent population (to allow for a ‘vacancy’ rate in the job market, similar to the housing market).553

The spatial distribution of establishments proportional to the number of jobs they contain is presented in Figure 9. The554
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Figure 7: Spatial distribution of synthetic buildings (N = 116,415)

distributions of synthetic establishments of different industries are consistent with the distribution of synthetic buildings,555

with manufacturing jobs concentrated in suburban areas mostly in industrial buildings and jobs in the finance and real556

estate sectors mostly located within the city center in commercial buildings.557

4.4 Full synthetic population: Linking agents to locations558

The final step of the population synthesis is to match the synthesized agents with the synthesized spatial entities of the559

built environment by assigning housing units to households and jobs to workers. We find that our rule-based heuristic of560

matching household agents with housing units works remarkably well. Assuming a vacancy rate of 2%, we were able to561

assign housing units to over 99% of the households within their preferred planning area (neighborhood) and dwelling562

type. Only 0.8% of households required an adjustment for neighborhood or dwelling type. The spatial distribution of563

residential locations of all 1.26 million households is shown in Figure 10a.564

After assigning housing units to households, we were able to assign a job to each of the 3.12 million workers in their565

preferred industry sector. As a recap, we estimated a destination choice model on the HITS microsample whereby566

assignment likelihood ratios were (for each industry sector) directly proportional to the number of jobs in the destination567

TAZ and inversely proportional to the commute distance. The spatial distribution of job locations of employed568

individuals is shown in Figure 10b. Additionally, as a measure of the accuracy of our job assignment, we compared the569

job-housing distances for workers in our synthetic population with those in the HITS microsample. We found that the570

distributions look quite similar, although we tend to slightly overestimate the commute distances (see Figure A1 in the571

appendix). The median commute distance for our synthetic workers is 8.44 kilometers, as compared to 7.93 kilometers572

for the HITS sample.573

After both matching procedures are complete, the spatially assigned agent population is ready for use in large-scale574

agent-based microsimulations. These initial assignments can be further adjusted to match predictions of behavioral575

models (such as residential and job location choice models) by performing a ‘burn-in’ simulation using the ABM (Basu576

and Ferreira, 2020b).577

16



CREATING FULL SYNTHETIC POPULATIONS FOR AGENT-BASED SIMULATIONS - A PREPRINT

(a) HDB units (74.5%) (b) Private units (17.4%)

(c) Landed properties (6.2%) (d) Other units (1.9%)

Figure 8: Spatial distributions of synthetic housing units (N = 1,661,284)

5 Conclusion578

Agent-based models (ABMs) of urban systems have been in use for several decades. In recent times, ABMs have grown579

in popularity due to the availability of high-performance computing resources and large data storage capabilities. ABMs580

also continue to grow in complexity by attempting to model urban systems in increasing spatio-temporal detail. Perhaps581

the most crucial component of ABMs is the population they seek to model, thus requiring the creation of a synthetic582

population. Data availability challenges affect the resolution at which synthetic populations can be created, whereby583

agent-based information at coarse spatial resolution needs to be combined with aggregate summary information at high584

spatial resolution. Even though data may be available across agencies, variable definitions and data collection periods585

differ, confidentiality issues persist, and considerable time and funding are needed to piece together the elements. We586

think it would be worthwhile to invest in periodic construction of detailed synthetic populations that can be used for587

many modeling purposes. The construction could be timed to coincide with the periodic travel surveys that many588

metropolitan areas conduct every 4-10 years. Several population synthesis methods have been suggested over the years,589

starting from iteratively updating weights in a relatively simple manner to complex deep learning models. Despite the590

growing research interest in population synthesis, the spatial dimension of synthetic populations has remained largely591

neglected. Most existing approaches assign aggregated zonal information to the synthetic agents and fail to go further592

in terms of spatial granularity.593

In this study, we addressed this myopic treatment of the synthetic population by creating two distinct components -594

agents and the built environment - that could be integrated to form what we call the ‘full’ synthetic population. In terms595

of creating the built environment, we generated synthetic spatial entities such as buildings, housing units, establishments,596

and jobs at various spatial scales (e.g., postcodes, land use parcels, planning areas, planning regions, etc.). We employed597
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Figure 9: Spatial distribution of synthetic establishments (N = 194,044)

(a) Residential locations (b) Job locations

Figure 10: Spatial distributions of residential locations of households and job locations of workers

a two-stage framework to probabilistically sample households and individuals from the microsample and subsequently598

adjust these pools to match distributions of marginal control variables. Using various measures, we demonstrated599

that our BN + GR framework (combining Bayesian Networks and Generalized Raking) performed better than more600

commonly used methods (such as IPU and BN only) in both capturing the heterogeneity in the microsample and601

matching marginal controls. We also highlighted the importance of accounting for heterogeneity by using separate602

type-specific models based on an explicitly defined household typology. Using data fusion techniques on multiple603

spatial datasets, we generated various disaggregate spatial entities and found their spatial distributions to match the604

‘real’ built environment in our study area. Thus, we highlighted how our proposed framework can be used to generate a605

‘full’ synthetic population for use in ABMs of any study area of choice.606
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The research presented in this paper can be extended in various ways. One area of future research is the development of607

better and faster algorithms for population synthesis. We found that probabilistic models such as the BN can replicate608

the microsample well, but an additional proportional update step (using the GR or another IPF-variant) is necessary to609

match the marginal controls. The second step of matching reduces the goodness-of-fit of the first step of sampling,610

as we highlighted through various error measures. A combined and simultaneous framework (e.g., a multi-objective611

optimization routine) could address this issue that arises during sequential adjustment. Additionally, we found that the612

integerization process introduced about 2.5-5% errors in the spatial distribution of our synthetic population. Perhaps a613

better (and faster) integerization algorithm might be able to reduce these admittedly small errors even further.614

The exploration of better conceptual frameworks for synthetic populations (and their subsequent use in ABMs) is615

another promising research area. While we went further than most in generating disaggregate spatial entities such as616

buildings, it is possible to go even further in the pursuit of creating digital twins and synthesizing even the interiors617

of buildings. Such detailed synthesis can enable the use of ABMs to model building evacuation techniques in case of618

emergencies, building energy use, and airflow within populated buildings (to name but a few applications). The reader619

might also wonder if a separate household typology could have resulted in a more ‘accurate’ synthetic population.620

We simply chose our typology because it best represented the population in our study area, which is what should621

guide modelers. However, it is certainly feasible to explore alternative typologies with different categories or different622

numbers of categories, or even sidestep these explicit definitions by deriving the typology from the data (through, e.g.,623

latent class analysis). Finally, we note that every population synthesis paper that we reviewed has demonstrated their624

proposed framework in only one study area (which we are equally guilty of). It would behoove the ABM community to625

begin thinking about extending their population synthesis frameworks to other study areas or to demonstrate the use of626

a generalizable framework in multiple study areas.627

In closing, we hope that we are able to convince readers and the ABM community at large to pay more attention to628

standardizing easily repeatable methods for creating synthetic populations in greater spatial detail and with adequate629

representation of heterogeneity. We anticipate that ‘full’ synthetic populations (comprising both agents and the built630

environment) can enable the exploration of hitherto unanswered research questions about urban processes with high631

spatio-temporal granularity.632
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Appendix758

Table A1: Household-level variables used in the BNs

Variable Categories Sample share (%)

Dwelling type
(unit_type)

HDB 1- and 2-Room Flats 5.0%
HDB 3-Room Flats 20.5%
HDB 4-Room Flats 35.9%

HDB 5-Room and Executive Flats 25.7%
Condominiums and Apartments 6.6%

Landed properties 6.2%
Others 0.01%

Household size
(hh_size)

One 3.8%
Two 13.8%

Three 19.6%
Four 27.9%
Five 19.2%

Six or more 15.8%

Monthly household income
(hh_income)

No Income 4.5%
Less than $1,000 2.8%
$1,000 to $2,000 7.6%
$2,000 to $4,000 23.6%
$4,000 to $6,000 21.0%

$6,000 to $10,000 20.0%
$10,000 to $15,000 12.6%
$15,000 to $20,000 3.1%
More than $20,000 5.0%

Number of workers
(workers)

Zero 7.2%
One 27.4%
Two 41.7%

Three or more 23.7%

Number of cars
(cars)

Zero 61.6%
One 33.6%
Two 4.0%

Three or more 0.7%

Age of head of household
(hh_age)

15 to 30 years 1.7%
30 to 60 years 67.2%

More than 60 years 31.1%

Ethnicity of head of household
(hh_eth)

Chinese 72.7%
Indian 11.4%
Malay 13.2%
Others 2.7%

Distance to nearest MRT station
(mrt_dist)

Less than 400 meters 16.6%
400 to 800 meters 37.0%

More than 800 meters 46.5%
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Figure A1: Distributions of job-housing distances for workers
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Table A2: Individual-level variables used in the BNs

Variable Categories Sample share (%)

Gender
(sex)

Male 47.0%
Female 53.0%

Age
(age)

Less than 15 years 6.6%
15 to 30 years 51.6%
30 to 60 years 20.4%

More than 60 years 21.4%

Monthly individual income
(income)

No Income 44.1%
Less than $1,000 3.8%
$1,000 to $2,000 9.9%
$2,000 to $4,000 22.7%
$4,000 to $6,000 11.2%

$6,000 to $10,000 5.5%
More than $10,000 2.9%

Industry
(industry)

Accomodation and Food Services 3.6%
Administrative and Support Services 6.0%

Community, Social and Personal Services 10.3%
Construction 3.4%

Financial Services 4.1%
Information and Communications 4.1%

Manufacturing 6.0%
Professional Driver 1.2%

Professional Services 7.8%
Real Estate Services 0.9%

Transport and Storage 4.5%
Wholesale and Retail Trade 4.4%

Others 0.1%
None (for those without a job) 44.4%

Employment status
(employ)

Employed Full Time 46.5%
Employed Part Time 5.4%

Self-Employed 3.6%
Full Time Student 18.0%

Retired 9.2%
Homemaker 13.4%
Unemployed 2.7%

Others 1.1%

Highest educational qualification
(edu)

Primary 6.1%
Secondary 18.4%

Post-Secondary 5.6%
Polytechnic 11.5%
Bachelor’s 17.1%

Master’s/Doctorate 5.4%
Postgraduate certification 3.6%

Professional degree 3.7%
Others 19.2%
None 9.4%
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