Human Beings are not Statistically Intuitive

Many, if not most, planners work with quantitative data. Some summarize, analyze, and present data they have collected themselves or have obtained from secondary sources; others must review quantitative analyses and assess the validity of arguments made therein. This course is designed to prepare you to critically review analyses prepared by others, as well as to conduct basic statistical analysis of data yourself.

People use narratives as the primary thinking and communication instruments. More true is this for planners! We empathize dearly with students who find statistics difficult—and this is precisely the reason for a class dedicated to it. We present six planning cases in the course:

1. India Slum and Informality
2. Infrastructure Financing (optimism bias and strategic misrepresentation)
3. African Education (program evaluation, policy design)
4. Climate Change and Cities (resilience)
5. What's in a House Price? (Tax Capitalization)
6. Natural Resources Protection

which start with the planning questions, explain in these particular contexts QR can be the most fitting approach, and naturally package the statistical concepts within. Using these examples of quantitative analyses related to the planning profession, you will become familiar with a variety of tools for describing and comparing sets of data, as well as those used to generate estimates and test hypotheses. The course also emphasizes the development of sound arguments and research design, such that students appreciate both the power and limits of quantitative analysis in argumentation. Unlike many other statistics classes, 11.220 pays particular attention to developing the skill of expressing statistical ideas in clear, simple language. We view these skills as essential for effective planning practice.
In this course students will learn to use Stata for quantitative and statistical analyses and may also use Access, Excel, and ArcGIS when analyzing a dataset of their choice for the final paper. In addition to lecture, there is a required 1-hour session each week that will alternate between a laboratory session for hands-on practice with the software and a classroom recitation consisting of problem solving using statistical methods and equations.

Student expectations

Learning Norms

1. Reading before the class: to establish the norm of reading
2. No laptops in class
3. In-class idea notes
4. Learning from each other
Grading

<table>
<thead>
<tr>
<th>Items</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading and class participation (including in-class idea notes)</td>
<td>10%</td>
</tr>
<tr>
<td>Five Problem Sets (10%, 6%, 6%, 6%, 12%)</td>
<td>40%</td>
</tr>
<tr>
<td>Quizzes (10%, 10%)</td>
<td>20%</td>
</tr>
<tr>
<td>Term project (Idea 1%; Proposal 4%; Interim report 5%; Full report 12%; Revised report 8%)</td>
<td>30%</td>
</tr>
</tbody>
</table>

Readings
1. Case Materials

3. Required Articles

In-class idea notes
At the end of each class, we’ll reserve 5 minutes for you to write an in-class idea note. You may use it to
 - What does the lecture inspire you to think? Either as a practitioner, as a researcher, or as a citizen
 - How does the lecture connect to any of your personal experience, public events, planning debates, other courses, or your future career?
 - Do you learn any new data source that might be of use for your future work?
 - Any puzzles, confusions or misunderstandings of the statistical concepts discussed today
 - Anything you’ve learned on research design? Any ideas for your term project topics?
It is NOT graded. Everyone gets the full score as long as you submit it. We will collect and use them to gauge the class pace, target our recitations and improve the next lectures. You may consider this as a mini class evaluation and constant feedback.

Problem Sets
1. Encourage group work but individual submission required; please write down collaborators’ names.
2. Please submit a hard copy to your TA at the beginning of lecture on the day that it is due. It is your responsibility to ensure the printed copy makes it to the TA in time.
3. Late policy:
 a. For problem sets 1, 2, 4, late assignments will receive a 20% deduction per day up to two days. After 2 days, late assignments will not be accepted and a 0 will be given.
 b. For problem sets 3, 5, NO late assignment will be accepted and a 0 will be given. This is because problem sets 3 and 5 are due before the two quizzes and we need to distribute solutions as a study aid for the quizzes.

Term Project
Each student will work on a term project with the topic selected by the student. We’ve introduced five milestones throughout the term: Idea; Proposal; Interim report; Full report; Revised report. This design serves two purposes: 1) to avoid procrastination by breaking it into smaller and more manageable parts; 2) for us to provide you with timely feedback. We’ll distribute the Term Paper Guide with detailed instruction and clear expectations. Please see Appendix I for the term project titles from the QR2014 class.

Recitation
Students are strongly encouraged to join the weekly recitation.
- Regular sessions: Wed 2-3pm 1-242; Wed 2-3pm 1-273; Thu 5-6pm 9-450A
- Special arrangement for Thu, Feb 12: no recitation that day. Please come to the Wed sessions on Feb 11 instead.

Please complete this survey to indicate your preferred time slot. You will do our best to accommodate your preference but cannot guarantee it. http://goo.gl/forms/uDhiXeZAlq

Statistical computing:
This course uses the statistical software program Stata. Prior experience in Stata is not required. Teaching assistants will teach basic Stata programming during recitations and labs. The following is a list of resources about how to use Stata:

- Official Resources and support for Stata: http://www.stata.com/support/
- Stata Resources (UCLA): http://www.ats.ucla.edu/stat/stata/default.htm
- Introduction to Stata (UNC): http://www.cpc.unc.edu/research/tools/data_analysis/statatutorial/index.html
- Stata Tutorial (Princeton Univ.): http://data.princeton.edu/stata/default.html

STATA, R and RStudio are available for both Windows and Macintosh. Further, they are all available under both Macintosh and Windows on our CRON cluster computers.

- SATA: <http://ist.mit.edu/stata/all>
- R: <http://cran.r-project.org/bin/macosx/>
- R Studio: <http://www.rstudio.com/products/rstudio/>

R and RStudio are available to students FREE to install on their own computers. STATA requires the purchase of a license ($30-$100 depending on sophistication of package). You can also run STATA WITHOUT PURCHASING THE SW, albeit, with a tiny bit of inconvenience. <http://cronlasso.mit.edu/cron/p.lasso?t=8:5:10>
Class Schedule

| L1 | 02/04 QR in a Nutshell |

Case 1: Slums in India

L2	02/09 Slum in India (Faizan); Measurement and Data
L3	02/11 Descriptive Statistics; Brief Intro to Probability
R1	02/11 Research Design *Special: No Thu recitation

Feb 16 Presidents Day -- Holiday

Case 2: Infrastructure Finance

| L4 | 02/17 Reference Class Forecasting |
| L5 | 02/18 Probability |

R2 | Lab 02/18, 02/19 Intro to Stata

| L6 | 02/23 The Normal and Binomial Distributions |

Case 3: African Education

L7	02/25 African Education (Miguel & Lyndsey); RCT
R3	02/25, 02/25 Probability
L8	03/02 Inferential Statistics
L9	03/04 Confidence Intervals; Tests of Significance

R4 | 03/04, 03/05 Sampling, Estimation, Confidence Interval

Case 4: Climate Change and Cities

L10	03/09 Climate Change and Cities
L11	03/11 Hypothesis Testing
R5	03/11, 03/12 Hypothesis Testing
L12	03/16 T-test, Z-test, Differences in Means
L13	03/18 Quiz 1 (in class)
R6	03/18, 03/19 Difference of Means and Proportions

Mar 23~27 Spring Break

| L14 | 03/30 Guest Lecture (Fadi Masoud) |

Case 5: What’s in the housing price?

<p>| L15 | 04/01 What’s in the housing price? |</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Instructor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7</td>
<td>Lab 04/01, 04/02 Hypothesis Testing etc in Stata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L16</td>
<td>04/06 Scatterplots and Correlation; Katherine McNeill (tbc)</td>
<td>M18</td>
<td></td>
</tr>
<tr>
<td>L17</td>
<td>04/08 Linear Regression in a Nutshell</td>
<td>M18</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>04/08, 04/09 Regression Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L18</td>
<td>04/13 Multiple Regression</td>
<td>M21</td>
<td>Prpsl</td>
</tr>
<tr>
<td>L19</td>
<td>04/15 Practical Matters</td>
<td>M23</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>Lab 04/15, 04/16 Regression Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apr 20 Patriots Day -- Vacation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>04/22 Art of Model Building</td>
<td>M24</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>Lab 04/22, 04/23 Linear Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L21</td>
<td>04/27 Assumptions and Endogeneity</td>
<td>M19</td>
<td>5</td>
</tr>
<tr>
<td>L22</td>
<td>04/29 Quiz 2 (in class)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Case 6: Natural Resources Management

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Instructor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>L23</td>
<td>05/04 Natural Resources; Nominal and Ordinal Data</td>
<td>Case 6, M15</td>
<td>Interim</td>
</tr>
<tr>
<td>L24</td>
<td>05/06 Logistic Regression</td>
<td>M16</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>Lab 05/06, 05/07 Logistic Regression; Term Paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L25</td>
<td>05/11 Evidencing Causality: Advanced Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L26</td>
<td>05/13 Ten Ideas from QR: Course summary</td>
<td></td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>05/18 Revised Paper Due</td>
<td></td>
<td>Rvsd</td>
</tr>
</tbody>
</table>
Appendix I Term Project Titles from 2014 QR Class

- The Relationship between Crime Cases and Living Patterns in Neighborhoods of Boston
- The Impact of LIHTC Construction on Neighborhood Crime in San Francisco
- Calculating the Impact of Residential Energy Efficiency Upgrades in Somerville, Massachusetts
- Is Home Ownership the Answer to Canada’s First Nations Housing Crisis?
- Shored Up? Investigating if Public Beach Nourishment Funds Advantage Communities in New York and New Jersey with Higher Socioeconomic Status
- Displacement after the Loma Prieta Earthquake
- An Initial Analysis of the Potential for Energy Efficiency-Focused Workforce Development in Eastern Kentucky
- The Knowledge-Driven Economy and Housing Affordability Evaluating the Relationship between High-Skill Jobs and Metropolitan Rents
- Using Regression to Explore City Parks and Crime Rates: State level analysis of hate crimes in the US
- Vehicle Ownership In Cambridge, Massachusetts
- What influences recycling rates? Exploring the relationship between income, age and recycling diversion rates in New York City’s community districts
- Statistical analysis of historical districts in Boston
- Job Creation and the Shale Gas Industry A Case Study of Pennsylvania
- Leaders actions and employee activity
- The Mutual Influence of Park Funding and Exercise An examination of the relationship between total park expenditures and physical activity in US cities
- Affordable for All? Examining the Correlation between Rental Burden and Race in Cook County, Illinois
- Transit Ridership in the City of Chicago Impacts of Race, Income, Automobile Access and Distance to Transit
- Water Pollution & Agriculture The Relationship between Crop Area, Population, and Nitrate-Based Water Quality Violations In Pennsylvania
- Is the Conflict Between the United States & Iran Associated With the Change in the Number of Iranian Students in the U.S. Universities?
- Pawnshops and Poverty: The Relationship between Alternative Financial Institutions and the Communities They Serve
- The Suburban Advantage: Student Academic Achievement From City Center to Suburban Sprawl
- Decentralization And Access To Development By The Most Poor
- Budgeting for Homelessness: What Factors Should Impact Hud Funding Allocations
- Opening The Black Box: The Role Of Institutions In Development
• Is Ethnic Diversity Associated With Human Development In Africa?
• Concentrated Poverty and Depression: An Analysis of New York City Neighborhoods
• Does Transportation Mode Have Relationship with Public Health? A Regression Analysis of Obesity Rates and Public Transit Mode Share & Walking/Biking Mode Share
• More parks or not? The Relationship between Crime and Parks in Community of Chicago

Appendix II Supplementary Learning Materials

Free Online Courses
• EdX
 o Introduction to Statistics
 o Introduction to Statistics: Inference (Stat 2.3x)
• Coursera
 o Duke University: Data Analysis and Statistical Inference (coursera)
 o Statistics One by Andrew Conway, Princeton: https://www.coursera.org/course/stats1
 o https://class.coursera.org/dataanalysis-001/class/index
 o Data Analysis by Jeff Leek: https://www.coursera.org/course/dataanalysis
 o Visualizing data: https://itunes.apple.com/us/course/visualizing-data/id510187558
 o Passion Driven Statistics: https://www.coursera.org/course/pdstatistics
 o Statistics: Making Sense of Data by Alison Gibbs: https://www.coursera.org/course/introstats
 o Think Again: How to Reason and Argue
• Udacity: Introduction to Statistics
• Berkeley SticiGUI: http://www.stat.berkeley.edu/~stark/SticiGui/index.htm

• On Endogeneity (and Instrument Variables):
 o https://www.youtube.com/watch?v=CChfjm8qjw
 o https://www.youtube.com/watch?v=llII-K9MD8
 o https://www.youtube.com/watch?v=OWHChEP56ms
 o https://www.youtube.com/watch?v=cX5q_dKt6iU
• Omitted Variable Bias
 o https://www.youtube.com/watch?v=6I1tUM0RB6I
 o https://www.youtube.com/watch?v=_Ka_PAvdDjk
 o https://www.youtube.com/watch?v=CndHm9WDV1E

Data Analytics Examples
• TED Ed
 o http://ed.ted.com/lessons/peter-donnelly-shows-how-stats-fool-juries
• Khan Academy:
 o https://www.khanacademy.org/math/probability/descriptive-statistics
 o https://www.khanacademy.org/math/probability/statistics-inferential
• Youtube Jeff Leek Statistics Channel
• Simply Statistics: http://simplystatistics.org/
• Economist: http://www.economist.com/blogs/graphicdetail
• New York Times:
 o Data http://data.nytimes.com
• Simulation Tools:
 o Impact of Outliers on a Regression Fit
 http://www.stat.sc.edu/~west/javahtml/Regression.html
 o Effect of Sampling on a Regression Fit
 http://lstat.kuleuven.be/java/version2.0/Applet003.html
 o Minimizing the Sum of Squared Residuals
 http://hspm.sph.sc.edu/courses/J716/demos/LeastSquares/LeastSquaresDemo.html

Additional Reading
 (5th or higher edition is fine)
 Statistical Society, Series D, 28, 4, pp. 231–239.
• Naked Statistics
• Deborah Stone: Interperative Numbers
 Science and Urban Economics 35, no. 5: 593-96.
• Hodge, G. 1963. The use and mis-use of measurement scales in city planning. Journal of the
 American Institute of Planners 29, no. 2: 112-121.
• Moore, David S. 2004. Scatterplots and correlation. Chapter 4 in The Basic Practice of

Acknowledgement
I would like to thank Kelly, Lyndsey, Faizan for their amazing effort of creating the cases; Chris
Zegras, Albert Saiz and Ezra Glenn for their concrete advices on the case based approach and
overall pedagogy, and Dennis Frenchman, Eran Ben-Joseph, and Sandra Wellford for their
generous institutional, financial and attitudinal support!